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Abstract The selection pressures responsible for intra- and interspecific variation in

avian clutch size have been debated for over half a century. Seasonal declines in clutch size

represent one of the most robust patterns in avian systems, yet despite extensive research

on the subject, the mechanisms underlying this pattern remain largely unknown. We tested

a combination of experimental and observational predictions to evaluate ten hypotheses,

representing both evolutionary and proximate mechanisms proposed to explain seasonal

declines in avian clutch size. In line with long held life-history theory, we found strong

support for both an evolved and proximate response to food availability for young. We also

found evidence consistent with predictions that proximate level experiential nest predation

influences seasonal declines in clutch size. Finally, older females appear to invest more in

reproduction (initiate nests earlier and lay larger clutches) and choose better territories than

younger females. Our results highlight the importance of examining multiple hypotheses in

a theoretical context to elucidate the ecological processes underlying commonly observed

patterns in life history.
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Introduction

A critical issue in understanding life history evolution is identifying sources of selection

that shape patterns and trends across diverse taxa (Roff 1992). Clutch size varies markedly

both within and among species and has implications to individual fitness (Pettifor et al.

1988; Martin et al. 2000). Hence, studies designed to identify processes that explain

variation in clutch size play a key role in our understanding of life history evolution (Roff

1992, 2002; Stearns 1992). Theoretical and empirical studies demonstrate the importance

of food availability (Perrins and McCleery 1989; Aparicio 1994) and nest predation (Smith

1993; Wheelwright and Schultz 1994; Martin 2004; Travers et al. 2010) in shaping clutch

size expression. However, it is likely that multiple sources of selection (numerous intrinsic

and extrinsic factors) operate synergistically in shaping clutch size expression (Jetz et al.

2008).

The pattern of a seasonal decline in clutch size is among the most ubiquitous and well-

studied patterns in avian ecology (Murphy 1986; Perrins and McCleery 1989; Hochachka

1990), but the underlying causes of this pattern remain debated. Numerous hypotheses are

proposed to explain why avian clutch size declines seasonally, including food availability

(Perrins and McCleery 1989; Aparicio 1994), adult mortality (Martin 2004), juvenile

mortality (Smith 1993; Wheelwright and Schultz 1994), and even mechanisms related to

age of breeding females (Saether 1990; Martin 1995a, b), among others. However, results

of past studies show almost equivocal support for, and rejection of, competing hypotheses

(e.g., female age Slagsvold and Lifjeld 1988; Wheelwright and Schultz 1994; Winkler and

Allen 1996 versus Hamann and Cooke 1989; Sjöberg 1994; Blums et al. 1997). The

ambiguity is in part because most studies are limited to testing one or two hypotheses,

which can be misleading as competing hypotheses in evolutionary ecology are not typi-

cally mutually exclusive (Platt 1964). Moreover, there is inherent complexity in isolating

the degree to which variation in clutch size expression is attributable to proximate versus

evolutionary responses (Martin 1995a, b). Like the majority of life history traits, clutch size

expression is the result of phenotypic adjustment within a broader life history strategy. The

evolutionary factors shaping clutch size place bounds upon which proximate ecological

conditions lead to phenotypic variation. Understanding the degree to which the seasonal

decline in clutch size is due to proximate constraints or an evolved strategy will aid

significantly in our understanding of life history evolution. Here, we summarize five

selection pressures represented by ten of the most common hypotheses proposed to explain

seasonal declines in clutch size and simultaneously test 15 predictions (Table 1) within a

framework that considers both proximate and ultimate causation.

Food (evolutionary and proximate)

Egg production and nestling-feeding are costly activities which require substantial food

resources (Williams 1966). Thus, it is not surprising that variation in clutch size is com-

monly attributed to variation in food abundance (Perrins and McCleery 1989; Aparicio

1994). However, food availability may act through both ultimate and proximate processes.

If food availability consistently declines (i.e., across years) throughout the breeding season,

we would expect an adaptive response among females whereby females lay smaller

clutches late in the season because food is predictably less abundant. This hypothesis

suggests an adaptive evolutionary strategy to a predictable seasonal reduction in food

availability for egg-production or nestling rearing (Lack 1954). In contrast, food may act

proximately if food availability during egg-production or even nestling feeding constrains
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clutch size. In this case, the seasonal decline in clutch size is a proximate response by

individual females nestling later in the season to less food for egg production (Aparicio

1994), or given a proximate indicator of future food conditions (i.e. leaf phenology;

Nilsson and Källander 2006), for rearing dependent young.

Nest predation (evolutionary and proximate)

In most avian systems, nest predation is the primary cause of reproductive failure (Ricklefs

1969; Martin 1995a, b) and therefore an important selection agent that can clearly shape

avian reproductive strategies (e.g. Martin et al. 2000). Like food availability, nest predation

Table 1 Predictions of ten hypotheses to explain seasonal declines in clutch size

Sources of
selection

Hypotheses Predictions

Food Food for egg-
production

1) Evolutionary: Food abundance will decline during the
time-frame when females in the population are producing
eggs

Food for nestling-
feeding

2) Evolutionary: Food abundance will decline during the
time-frame when parents in the population are feeding
young

Food for egg-
production

3) Proximate: Food available in an individual territory
during egg production will be positively associated with
clutch size

Food for nestling-
feeding

4) Proximate: Food available in an individual territory
during the nestling period will be positively associated
with clutch size

Nest predation Seasonal nest-
predation

5) Evolutionary: Probability of daily nest predation will
increase seasonally

Experiential nest-
predation

6) Proximate: If nests of banded females are force-failed,
then females will reduce clutch size in subsequent nesting
attempts more so than predicted by the population-wide
seasonal decline in clutch size

Female age Age-dependent
reproductive
investment

7) Evolutionary: Older females will initiate nests earlier than
younger females

8) Evolutionary: Older females will lay larger clutches than
younger females

Age-dependent
territory quality

9) Proximate: Older females will nest on territories with
higher food abundance

10) Proximate: Older females will nest on territories with
lower nest predation risk

Trade-offs with
future life stages

Time-limitation 11) Evolutionary: Nestling mass at pin break will increase
with date

12) Evolutionary: Clutch size of late season nests will be
negatively correlated with nestling mass

Intra-seasonal cost
of reproduction

Cost-of-reproduction 13) Proximate: Body condition of breeding females will
decline with date

14) Proximate: Average egg mass of experimentally
depredated females will decline from first to second
nesting attempts

15) Proximate: The number of days needed for females to
renest after experimental depredation will be greater than
the physiological minimum (5 days)
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has the potential to act through both ultimate and proximate mechanisms. In many loca-

tions, nest predation increases seasonally (Price et al. 1988; Perrins 1996). If nest predation

risk predictably increases throughout the breeding season (and across years), then we

would expect an adaptive response whereby females lay smaller clutches late in the season

to avoid the costs associated with nest loss (Lepage et al. 2000). However, individual birds

also appear capable of assessing nest predation risk and adjusting reproductive strategies to

minimize the costs of nest failure (Fontaine and Martin 2006a; Lima 2009; Travers et al.

2010). While the proximate cues underlying these decisions remain largely unknown,

failure of an entire clutch would seem to be a highly reliable cue indicating a high-risk

environment. This proximate hypothesis implies that a reduction in clutch size is a plastic

response to a perceived increase in risk whereby individual females employ a bet-hedging

strategy to reduce the costs of nest failure (Siikamäki 1998; Nilsson 2000). Hence, this

hypothesis posits that the seasonal decline in clutch size that we detect at a population level

is a manifestation of the increasing proportion of second nesting attempts with smaller

clutch sizes (after experiencing nest predation). This hypothesis cannot explain seasonal

declines in clutch size among individual birds initiating a second brood after a successful

first nesting attempt or a reduced clutch size for individuals initiating their first clutch late

in the season. Hence, this proximate hypothesis assumes the pattern is caused by differ-

ences between successive breeding attempts by the same birds (rather than any variation

among individuals).

Female age (evolutionary and proximate)

Life history theory predicts that reproductive investment should increase with age as a

result of diminishing reproductive potential (Stearns 1992; Roff 2002). Thus, one expla-

nation for the seasonal decline in clutch size, is an adaptive evolutionary strategy such that

older individuals breed earlier and lay larger clutches (Hochachka 1990; Smith 1993). This

evolutionary hypothesis assumes that earlier breeding and increased clutch size both

indicate increased reproductive effort. Although there are costs to females that arrive and

breed earlier (e.g. Decker and Conway 2009), there are also potential benefits (i.e., higher

probability of young surviving to reproduce, Drent and Daan 1980). The female-age

hypothesis is one of the most commonly tested hypotheses to explain the seasonal decline

in avian clutch size; however, the proximate mechanisms behind why older females lay

larger clutches earlier in the season often go untested. There is evidence to suggest that

birds are capable of assessing territory-level quality and differentially selecting breeding

sites either to maximize their energetic needs (e.g. Johnson and Sherry 2001; Borgmann

et al. 2004) or reduce nest predation risk (Fontaine and Martin 2006b; Lima 2009; Travers

et al. 2010). Given the importance of food and nest predation, it is reasonable that females

that arrive and initiate nests earlier (older females) are choosing nesting territories with

greater food resources and/or territories that are safer (indicating high quality territories).

This proximate hypothesis suggests that the seasonal decline in clutch size is a result of a

proximate response by individual females that arrive earlier having more resources

available for egg production and/or safer nesting sites, either of which facilitate increased

reproductive effort (e.g., Fontaine and Martin 2006a, b).

Time-limitation (evolutionary)

In temperate regions, breeding seasons are highly constrained by seasonality and the need

to progress to future life stages (e.g. molt, migration, food stashing). As the breeding
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season progresses, the trade-off between reproductive investment and investment in future

life stages can be substantial (Siikamäki et al. 1994). Thus, the seasonal decline in clutch

size may reflect an adaptive response, whereby females invest less in current reproduction

later in the season in order to save time and energy costs for future stages (molt, migration,

etc.). The advantage of laying a smaller clutch late in the season is that it shortens the entire

nesting period and reduces investment, allowing parents to trade-off reproductive invest-

ment with investment in future life stages. If individuals do not trade-off reproductive

investment by reducing clutch size (i.e., those that did not follow the population-wide

pattern of laying fewer eggs late in the season), we might expect trade-offs in other aspects

of reproduction (i.e., nestling feeding rates), which could result in reduced offspring

quality.

Costs-of-reproduction (proximate)

Cost of reproduction is a central concept in life history theory, whereby investment in

current reproduction constrains investment in future reproductive attempts, even within the

same breeding season (Williams 1966; Charnow and Krebs 1974). Nest failure represents a

significant loss of time and energy that is exacerbated by the limited opportunity to mit-

igate these energetic costs before attempting to renest. This hypothesis implies that the

seasonal decline in clutch size reflects a seasonal reduction in female condition following

nest failure (Price et al. 1988; the ‘‘condition hypothesis’’ in Winkler and Allen 1996).

Indeed, both initiation date and clutch size are associated with body condition in waterfowl

(Cooke et al. 1984; Blums et al. 1997), but the relationship is less clear in songbirds

(Slagsvold and Lifjeld 1988; Winkler and Allen 1996). This hypothesis relies on a prox-

imate mechanism (decline in body condition as a direct result of the energy expended on a

prior nesting attempt) and assumes that the seasonal decline in clutch size reflects a

constraint rather than an adaptive response to selective pressures. The hypothesis posits

that the pattern is caused by differences between successive breeding attempts by the same

birds (rather than any variation among individuals). However, support for this hypothesis

may reflect the alternative that individuals reproducing early are in better condition and

those reproducing later in poorer condition and may not indicate an actual decline in body

condition. Studies assessing seasonal condition changes within individuals are required to

separate these two mechanisms.

Materials and methods

Study system

From April through July of 2008 and 2009, we studied clutch size expression in red-faced

warblers (Cardellina rubrifrons) nesting in the Coronado National Forest, Santa Catalina

Mountains, Pima County, Arizona (32�430 N, 110�760 W). Our site consisted of four, 16- to

20-ha study plots in riparian drainages within mixed-conifer forest (2,300–2,800 m ele-

vation); however, since study plot did not influence our results, data were lumped for

analysis. Red-faced warblers are a small (9.8 g; Martin and Barber 1995), single-brooded,

short-distance migratory songbirds that show a seasonal decline in clutch size at this site

(based on an ordinal logistic regression with clutch size as the response variable and nest

initiation date and year (random factor) as explanatory variables).
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General sampling procedures

We located and monitored nests using long-standing techniques (Martin and Geupel 1993)

by visiting each nest a minimum of every 2 days. Most nests were located during the

building stage enabling precise identification of nesting stages, beginning with nest initi-

ation (the day that the first egg was laid) which is typically 5–6 days after building begins.

At a subset of nests (approximately 50%) we captured adult females by placing a 6-m mist-

net 2–4 m from their nest and either flushing the female from the nest or waiting for her to

return following an off-bout. All captured females were given a unique color-band com-

bination, aged as second-year or after-second-year (see below), and weighed. For nests

found prior to clutch completion, eggs were weighed within 2 days of clutch completion

and when possible we also weighed nestlings on day six of the nestling period (pin-break).

We used a digital scale (±0.001 g) for all measurements. To limit the influence of missing

data on nest predation estimates we only calculated nest predation rates for nests found

prior to clutch completion (following Fontaine et al. 2007) and calculated nest predation

rate as 1-number of days survived/number of days in the nesting period. Due to differences

in data collection we use a different subset of nests to test our 15 predictions (see Table 1),

which precluded us from evaluating all predictions simultaneously in one analytical model

(or in a single information-theoretic framework). However, this study is the first effort to

test predictions of ten of these hypotheses within the same study system.

Hypotheses examined

Food for egg-production/nestling-feeding (evolutionary)

We examined if an adaptive evolutionary strategy to a predictable seasonal reduction in

food availability (for egg-production or nestling-feeding) explains seasonal declines in

clutch size. To do this, we measured food abundance weekly beginning 2 weeks prior to

when the first egg is typically laid (20 April) until the last nestling typically fledges (9 July)

in our study area. Lepidoptera larvae are the primary food for adult and nestling red-faced

warblers during the breeding season, comprising nearly 80% of their diet (Martin and

Barber 1995; K. Decker, unpublished data). We estimated food abundance by establishing

eight sampling locations within each study plot from which we collected 25 cm branch

clippings from typical foraging sites (branch ends from 0.25 to 4 m in height; Martin and

Barber 1995; K. Decker,unpublished data) on fir (Pseudotsuga menziessi) and maple trees

(Acer grandidentatum) for a total of 128 branch clippings/week. We counted the number of

larvae on each branch clipping and corrected for surface area by placing each branch

clipping on a grid board (30 cm 9 30 cm) and recording the number of squares (out of

144) obstructed by leaves or branches (Decker and Fontaine, unpublished data). Prior to

analysis, we normalized the data by applying a square-root-transformation.

We conducted two separate linear regression analyses to examine seasonal trends in

food abundance during the egg-production period (approx. 26 April–8 June) and the

nestling-feeding period (approx. 13 May–13 July) with food abundance (during the egg-

production or nestling-feeding period) as the response variable and date and year as

explanatory variables. We tested the prediction that if food abundance for egg-production

drives seasonal declines in clutch size, then food abundance would decline seasonally

during the time-frame when females in the population were producing eggs (Table 1,

prediction 1). Alternatively, if food abundance for nestlings drives seasonal declines in
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clutch size then food abundance would decline during the time-frame when parents in the

population were feeding nestlings (Table 1, prediction 2).

Food for egg-production/nestling-feeding (proximate)

We examined if the seasonal decline in clutch size is a proximate response by individual

females nesting later in the season because less food is available for egg production, or for

nestling feeding (given a proximate indicator of future food conditions). We sampled

larvae from four maple trees and four fir trees within known nesting territories 1 week

prior to nest initiation and on day 6 of the nestling period. We used known nesting

territories based on the location of nest sites from the previous 7 years on these same study

plots to identify larvae sampling areas for examining food available for egg-production

because samples were collected prior to nest initiation (to represent the time when females

were gaining energy for egg production). We used two separate ordinal logistic regression

analyses with clutch size as the response variable and food abundance during egg-pro-

duction or nestling-feeding (at the territory level), year, and female age as explanatory

variables to test whether food available for egg production was associated with clutch size;

predicting a positive association between food abundance during egg-production and

clutch size (Table 1, prediction 3). We also predicted that if food available for nestlings

explains the seasonal decline in clutch size, then food abundance during the nestling period

will be positively associated with clutch size (Table 1, prediction 4).

Seasonal nest predation (evolutionary)

We examined if seasonal declines in clutch size are due to an adaptive response among females

to consistent seasonal increases in nest predation risk. We used a linear regression analysis with

nest predation rate as the response variable and nest initiation date as the explanatory variable. If

clutch size declines in response to seasonal changes in nest predation risk, we predicted that the

probability of daily nest predation would increase seasonally and that clutch size would be

negatively associated with the risk of nest predation (Table 1, prediction 5).

Experiential nest predation (proximate)

We examined if individual females respond to experimental nest predation by reducing clutch

size. We mimicked nest predation by experimentally depredating the first attempt of a subset

of nests of color banded females to compare clutch size between nesting attempts. We also

recorded clutch size of five renests in 2009 for females banded the previous year that expe-

rienced natural nest predation on first nesting attempts. Only nests that failed within 2 days of

clutch completion were considered to control for potential costs of reproduction (see Cost-of-
reproduction hypothesis below; Stearns 1992; Roff 2002). We used a paired t-test to examine

differences in clutch size between nesting attempts of individual females, predicting a

decrease in clutch size when renesting. We also calculated the predicted change in clutch size

(per day) for females involved in the force-fail experiment and compared the average with the

calculated change in clutch size among females in the population (including all nesting

attempts) during the same time period (i.e., the overall rate of seasonal decline in clutch size

for the population). We used a paired t-test to test the prediction that if nests are force-failed,

then females will reduce clutch size in the subsequent nesting attempt more than predicted by

the average rate of decline in clutch size of the population (Table 1, prediction 6).
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Female age–reproductive investment (evolutionary)

We examined if seasonal declines in clutch size are an adaptive evolutionary strategy such

that older individuals breed earlier and lay larger clutches (increased reproductive

investment with age due to diminishing reproductive potential). We classified females as

after-second-year (ASY) or second-year (SY) birds based on plumage characteristics (Pyle

1997), and tested the prediction that older females will initiate nests earlier and lay larger

clutches than younger females using two separate ANOVA analyses with female age and

year as explanatory variables (Table 1, prediction 7 and 8).

Female age–territory quality (proximate)

We examined if older females nest on higher quality territories (in response to a proximate

cue) and thus are able to lay larger clutches than younger females. As indices of territory

quality, we tested the prediction that older females nest on territories with higher food

abundance and/or lower nest predation risk using two ANOVA analyses with food

abundance/nest predation risk as the response variable and female age and year as

explanatory variables (Table 1, prediction 9 and 10).

Time-limitation (evolutionary)

We examined whether females trade-off between reproductive investment and investment

in future life stages due to limited time available during the breeding season. We used

linear regression analysis with per-nestling mass (as a proxy for nestling quality) as the

response variable and date, year, and female age, as explanatory variables to test whether

nestling mass was positively associated with date (Table 1, prediction 11). We predicted

that nestling mass would increase throughout the breeding season because females trade-

off the number of offspring for quality of offspring. A reduction in number of offspring

(but not quality) allows females to reduce investment in rearing young while investing

more in themselves to prepare for other life stages. We then used Pearson’s correlation

analysis to test for a correlation between nestling mass and clutch size for nests initiated

during the second half of the breeding season only (controlling for year and female age;

Table 1, prediction 12). We predicted a negative correlation between clutch size and

nestling mass for nests initiated late in the season (i.e., those that did not follow the

population-wide pattern of laying fewer eggs late in the season) which would result in

reduced quality (mass of) offspring.

Cost-of-reproduction (proximate)

We examined whether costs associated with nest failure early in the season constrain

females to laying smaller clutches later in the season. We used linear regression analysis

with female mass as the response variable and date and year as explanatory variables to test

the prediction that female body condition (mass) at the time of clutch completion declined

seasonally (Table 1, prediction 13). In addition, we used a paired t-test to test the pre-

diction that in experimentally depredated nests (see methods within the Nest Predation
Hypothesis), egg mass would decline between first and second nesting attempts of the same

female (Table 1, prediction 14). Finally, we calculated the average number of days

between the first and second nesting attempts of experimental females and compared this to

the physiological minimum number of days (five) required for songbird oocytes to reach
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maturity (von Haartmann 1990). We examined the prediction that the number of days

needed for experimental females to renest will be greater than the physiological minimum

number of days (Table 1, prediction 15).

Results

In 2008 and 2009, we monitored 123 red-faced warbler nests and found a seasonal decline

in clutch size (Ordinal logistic regression: Wald’s v2 = 14.81, P \ 0.001). We examined a

total of ten hypotheses (five evolutionary and five proximate explanations) and tested 15

predictions to explain this seasonal clutch size pattern (Table 1). We found support for

both nestling-feeding hypotheses (evolutionary and proximate), and both female-age

hypotheses (evolutionary and proximate). We also found support for the nest-predation

hypothesis at the proximate level.

Food abundance decreased during the time-frame when parents in the population were

feeding young (Linear regression: t60 = -3.76, P \ 0.001; Fig. 1) and we found a positive

association between clutch size and food availability when parents were feeding nestlings

(Ordinal logistic regression: Wald’s v2 = 4.28, P = 0.039), thus supporting the Nestling-

feeding hypotheses at both the evolutionary and proximate levels, respectively. However,

we found patterns opposite to both predictions of the Egg-production hypotheses; food

abundance increased when females in the population were laying eggs (Linear regression:

t55 = 3.54, P = 0.001; Fig. 1) and was negatively (not positively) associated with clutch

size (Ordinal logistic regression: Wald’s v2 = 4.77, P = 0.029).

Opposite to the prediction of the Seasonal-nest-predation hypothesis, the risk of nest

predation decreased, rather than increased, seasonally (Linear regression t64 = 2.45,

P = 0.017; Fig. 2a). However, clutch size of forced renests (3.8 ± 0.13 eggs; N = 10)

was smaller (Paired t test: t9 = 3.28, P = 0.010) than initial nesting attempts (4.5 ± 0.17

eggs, N = 10; Fig. 2b), as was predicted under the Experiential-nest-predation hypothesis.

Fig. 1 Egg-production hypotheses rejected, Nestling-feeding hypotheses supported. Lepidoptera larvae
abundance increased during egg production (1 week prior to egg laying; approx. 26 April–8 June; dashed
line), but decreased during nestling feeding (day 6 of the nestling stage; approx. 13 May–13 July; solid line)
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Also, the per-day change in clutch size between initial nesting attempts and the experi-

mentally induced renests (-0.07 ± 0.02 eggs/day, N = 10) was greater (Paired t-test:

t9 = -2.37, P = 0.042) than the per-day change in clutch size of the entire population

(among all females) during the same window of time (-0.01 ± 0.04 eggs/day, N = 46).

Older females did initiate nests earlier (ANOVA: F1,37 = 11.91, P = 0.001) and laid

larger clutches (ANOVA: F1,36 = 8.07, P = 0.007) than younger females (Fig. 3a), sup-

porting the Female-age hypothesis (evolutionary). In addition, older females nested on

territories with higher relative food abundance (0.012 ± 0.01 Lepidoptera larvae/cm2) than

younger females (0.005 ± 0.004 Lepidoptera larvae/cm2) as predicted (ANOVA:

F1,37 = 6.03, P = 0.019; Fig. 3b). However, older females did not nest on territories with

lower nest predation risk (ANOVA: F1,31 = 0.18, P = 0.676), so we provide some support

for the Female-age hypothesis at the proximate level.

We did not detect an association between nestling mass and date (Linear regression:

t43 = 0.75, P = 0.460) as would be predicted under the Time-limitation hypothesis. Nor

did we find a correlation between nestling mass (at pin-break) and clutch size for nests
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Fig. 2 Seasonal-nest-predation hypothesis rejected, Experiential-nest-predation hypothesis supported.
a Nest predation risk decreased with date; and b Clutch size decreased in experimentally depredated nests
(N = 10)
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initiated during the second half of the season (Pearson’s correlation: t35 = -0.15,

P = 0.424). We predicted that those individuals with a larger clutch size late in the season

(i.e., those that did not follow the population-wide pattern of laying fewer eggs late in the

season) would face a trade-off with other forms of reproductive investment (nestling

feeding rates) and have reduced quality offspring (as measured by mass).

In line with this finding, there was no evidence to support the Cost-of-reproduction
hypothesis. Female mass did not decline throughout the breeding season (Linear regres-

sion: t31 = 0.551, P = 0.586) and although clutch mass was less for second nests of the

experimental individuals due to smaller clutch sizes (Paired t test: t8 = 3.16, P = 0.013),

egg mass was greater (1st = 1.44 g ± 0.20, 2nd = 1.50 g ± 0.02; Paired t test: t8 = 4.51,

P = 0.002), and the renesting interval (8.0 days ± 1.21 SE) was only 3 days longer than

the physiological minimum.

Discussion

Clutch size of red-faced warblers declined as the breeding season progressed, a commonly

observed pattern in birds. Our test of ten alternative hypotheses proposed to explain this

pattern provides one of the most thorough empirical studies to evaluate the underlying

causes of seasonal declines in clutch size. Our data failed to support five hypotheses (three

at the evolutionary level and two at the proximate level), that were previously proposed to

Fig. 3 Female-age hypotheses
supported. a Older (after-second-
year) females (dark bars,
N = 26) initiated nests earlier
and laid larger clutches than
younger (second-year) females
(grey bars, N = 14); b Older
females (dark bars, N = 26)
nested in territories with higher
food abundance than younger
females (grey bars, N = 14)
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explain this ubiquitous pattern: Food for egg-production (evolutionary and proximate),

Seasonal-nest-predation, Time-limitation, and Cost-of-reproduction. We did, however, find

support for the Nestling-feeding (both evolutionary and proximate), Experiential-nest-
predation and Female-age (both evolutionary and proximate) hypotheses.

Our understanding of avian life history evolution has been greatly influenced by a

historical focus on the importance of food in shaping clutch size (Lack 1947, 1954; Perrins

1970), with the underlying assumption that investment in offspring is limited by access to

adequate food resources either during egg production or during the nestling period. Fol-

lowing that tradition, we measured food abundance during both of these developmental

stages to test whether changes in food abundance predicted an adaptive change in clutch

size. Our hypotheses addressed both evolutionary and proximate mechanisms for the

Nestling-feeding and Egg-production hypotheses. Our assessment of the Nestling-feeding
hypothesis suggests that food may indeed play an important role in shaping clutch size

evolution. As predicted, food available to nestlings declined as the season progressed

(Fig. 1). Hence, our results support the idea, originally proposed by Lack (1954), that food

available to nestlings constrains clutch size in birds. Female red-faced warblers appear to

time egg-laying so that they are feeding nestlings during the peak in food abundance, and

those doing so, are laying the largest clutches. Although we present this pattern as a fixed

response to predictable levels of food abundance, a parsimonious explanation (given the

repeatability of this pattern at this site even in poor nesting conditions; Decker and Conway

2009), it is possible that females may also use a proximate cue available at nest initiation

that predicts food abundance when young are in the nest. Indeed, females on territories

with greater food resources had a larger clutch size, which suggests that females may

express adaptive clutch size plasticity. Given the close relationship between clutch size,

nest initiation date, and proximate cues regulated by climatic conditions (e.g., Bourgault

et al. 2010), this area warrants further study not only for understanding clutch size evo-

lution but also avian conservation.

While we found support for the Nestling-feeding hypothesis, there is a clear lack of

support for the Egg-production hypothesis (at either the evolutionary or proximate level),

as there was no evidence that seasonal changes in food abundance during egg production

would result in decreased clutch size. Food abundance actually increased during the period

when females in the population were laying eggs (Fig. 1). Hence, energetic constraints on

egg production were reduced for females that laid eggs later in the season. Indeed, some

supplemental-food experiments suggest that clutch size in most birds is not constrained by

food availability (reviews in Arcese and Smith 1988; Meijer et al. 1990, but see Nilsson

1991; Nager et al. 1997). Alternatively the quality of food resources may have decreased

seasonally, via increases in secondary chemical compounds of plants eaten by Lepidoptera

or because the size of Lepidoptera decreases seasonally as the largest are consumed first. In

addition, females may suffer from calcium depletion (Reynolds and Perrins 2010) later in

the season which could constrain clutch size. Both scenarios present additional challenges

and further research is required to separate these potential effects.

Many prior studies have examined how food for egg production (Nilsson 1991; Aparicio

1994) or food for young (Smith 1993) influence seasonal declines in clutch size. To our

knowledge, ours is the first study to differentiate between, and explicitly test, both of these

possible mechanisms by which food limitation can influence breeding date and constrain

clutch size, and thus the first to illustrate the interaction between the proximate and

ultimate causations of food resources on seasonal patterns of clutch size.

Several studies have suggested that seasonal changes in nest predation may ultimately

drive seasonal declines in clutch size (Perrins and McCleery 1989; Smith 1993; Lepage
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et al. 2000). The Seasonal-nest-predation hypothesis assumes a predictable seasonal

increase in the probability of nest predation which would then favor a predictable seasonal

decline in clutch size. Instead, we and others (e.g., Roos 2002) found a seasonal decrease in

nest predation (Fig. 2a). At our site, increasing foliage cover associated with advancing

deciduous plant phenology may lead to reduced nest predation later in the season, inde-

pendent of other ecological conditions such as numerical or functional responses of pre-

dators (Fontaine et al. 2007; Chalfoun and Martin 2009).

While clutch size does not appear to covary predictably with seasonal changes in the

probability of nest predation, our results do suggest that females respond to nest predation

risk at the proximate level after experiencing a depredation event (supporting the Expe-
riential-nest-predation hypothesis), but do not assess predation risk a priori as has been

shown by others (e.g., Julliard et al. 1997, but see Fontaine and Martin 2006a). Females

whose nests were experimentally depredated reduced their clutch size by an average of 0.7

eggs in their subsequent nesting attempt (Fig. 2b). Given that most bird species experience

high rates of nest failure (Ricklefs 1969), the experience of nest predation itself may lead to

seasonal declines in clutch size at the population level as the proportion of laying females

that experienced a prior nest predation event increases as the breeding season progresses.

Moreover, experimental evidence suggests that some nest sites are more risky than others;

artificial eggs were more likely to be depredated when placed at sites that were depredated

(compared to a successful site) in a prior year (Martin et al. 2000; C. Conway, unpubl.

data). Hence, in some cases, the strength of nest predation risk as a source of selection may

override other sources that would support a larger clutch. This hypothesis cannot explain,

however, a decline in clutch size in subsequent nesting attempts for those individuals

rearing a second brood after a successful first nest, or a reduced clutch size in individuals

rearing a late first brood. Future studies should assess the relative rate of clutch size decline

in double-brooded species following successful and failed first attempts, a comparison we

were not able to make in our system because red-faced warblers are single-brooded.

Our results indicate that older females initiated nests earlier and laid larger clutches than

younger females (Fig. 3a), corroborating several past studies (Murphy 1986; Hochachka

1990; Smith 1993). The relationship between female age and clutch size may simply reflect

life history trade-offs driven by reduced reproductive opportunities; however, based on our

results, the more parsimonious cause may be that the age-clutch size relationship is a

reflection of proximate condition dependent responses that covary with age. Although

measures of territory quality are debated (see Ens et al. 1992), we found that older females

nested on territories with overall higher food abundance (Fig. 3b), and were thus ener-

getically able to produce and support a larger clutch. Older females did not however, nest

on territories with lower nest predation risk. Older, more experienced individuals may

occupy higher quality winter territories (Marra et al. 1993) which facilitates earlier arrival

at breeding locations, and thus procurement of higher quality breeding territories (Saether

1990; Martin 1995a, b), and greater investment in offspring. These findings suggest that

those individuals arriving first are selecting the highest quality territories as measured by

food (see Johnson and Sherry 2001; Borgmann et al. 2004) but not by risk of nest predation

(as shown by Fontaine and Martin 2006b; Lima 2009, Travers et al. 2010). Perhaps

individuals are unable to assess cues that indicate qualitative differences in predation risk

among territories, or there may be trade-offs between food abundance and nest predation

and potentially other measures of territory quality that we have not examined (e.g., tem-

perature; Ligon and Ligon 1988).

The reduction in clutch size following experimental depredation may be due to a time

constraint rather than an energy constraint. However, this seems unlikely as we failed to
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find support for the Time-limitation hypothesis which suggests that clutch size declines

seasonally due to time and energy constraints required by the need to switch to subsequent

life stages. For example, because molt and reproduction are energetically demanding (e.g.

Drent and Daan 1980), we might expect a trade-off between the time and energy needed

for both processes (Siikamäki et al. 1994) which may ultimately result in adult molt timing

that is dependent on the size of brood reared (Lessells 1986). As such, reproductive

investment should have similar trade-offs with migratory timing, winter territory estab-

lishment, or winter food stashing (for residents), all of which may be delayed by late

breeding events. Our results do not support such a trade-off in red-faced warblers as

nestling mass did not increase seasonally, and clutch size of late-reared nests was unrelated

to nestling mass.

Finally, seasonal declines in clutch size may be a response to reduced energetic con-

dition after a nest predation event (Cost-of-reproduction hypothesis). Birds can clearly

assess nest predation risk and adjust reproductive strategies to minimize costs (active bet-

hedging; reviewed in Lima 2009), and experiencing a nest predation event likely represents

the most accurate source of information regarding future risk available to a laying female.

Females producing smaller replacement clutches did not appear to do so because of lower

body condition (Norris 1993) or reduced food availability because female mass did not

decrease seasonally. Also, experimental females renested within 3 days of the physio-

logical minimum and produced heavier eggs in subsequent attempts (rejecting the Cost-of-
reproduction hypothesis). Although mass has been challenged as an accurate measure of

condition (see Hillstrom 1995), females were able to assess nest predation, build a new nest

at a different location within the territory, and produce an egg in a mere 8 days. Together,

this evidence suggests that females were not energetically limited, at least in terms of egg

production although they may suffer from calcium depletion (Reynolds and Perrins 2010),

which would require further assessment of available resources. However, support for this

hypothesis may reflect an alternative scenario where individuals reproducing early are in

better condition and may not indicate an actual decline in body condition. Studies assessing

changes in body condition within individuals are required to separate these two

mechanisms.

Conclusion

Many alternative hypotheses may explain the seasonal declines in clutch size (both at the

proximate and evolutionary levels). Potential alternatives not considered in this paper

which warrant more attention include: seasonal variation in parasites or disease (Gu-

stafsson et al. 1994), seasonal changes in temperature (Cooper et al. 2005), and temporal

heritability (clutch size as an adaptive tactic of individuals where breeding time exhibits a

heritable component; Sheldon et al. 2003; Hendry and Day 2005). In addition, better

knowledge regarding variation in the timing of nest initiation (i.e., based on expected

clutch size, extrinsic factors, or genetically determined breeding times) will ultimately help

assess which hypotheses are more likely to explain seasonal declines in clutch size (and

which predictions are most viable). We examined the hypotheses that represent a fair

subset of those considered frequently in past and current literature. In the end, by exam-

ining predictions of multiple alternative hypotheses in an a priori theoretical framework

that considered both proximate and ultimate causation, we were able to isolate several

important selection pressures shaping a ubiquitous pattern whose underlying cause has

been pondered for over 60 years. In doing so, our findings suggest that seasonal patterns of
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clutch size expression result from the combination of ultimate and proximate sources of

selection such that seasonal patterns of food abundance for young bounds clutch size

evolution, while proximate responses to nest predation and age- related territory decisions

fine tune an individual’s clutch size expression.
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Jetz W, Sekercioglu CH, Böhning-Gaese K (2008) The worldwide variation in avian clutch size across

species and space. PLoS Biol 6:e303

Evol Ecol (2012) 26:683–699 697

123



Johnson MD, Sherry TW (2001) Effects of food availability on the distribution of migratory warblers among
habitats in Jamaica. J Anim Ecol 70:546–560

Julliard R, McCleery RH, Clobert J, Perrins CM (1997) Phenotypic adjustment of clutch size due to nest
predation in the great tit. Ecology 78:394–404

Lack D (1947) The significance of clutch size. I. Intraspecific variation. Ibis 89:302–352
Lack D (1954) The natural regulation of animal numbers. Oxford University Press, London
Lepage D, Gauthier G, Menu S (2000) Reproductive consequences of egg-laying decisions in snow geese.

J Anim Ecol 69:414–427
Lessells CM (1986) Brood size in Canada geese: a manipulation experiment. J Anim Ecol 55:669–689
Ligon JD, Ligon SH (1988) Territory quality: key determinant of fitness in the group-living green wood-

hoopoe. In: Slobodchikoff C (ed) The ecology of social behaviour. Academic Press, London,
pp 229–253

Lima SL (2009) Predators and the breeding bird: behavioral and reproductive flexibility under the risk of
predation. Biol Rev 84:485–513

Marra PP, Sherry TW, Holmes RT (1993) Territorial exclusion by a long-distance migrant warbler in
Jamaica: a removal experiment with American Redstarts (Setophaga ruticilla). Auk 110:565–572

Martin K (1995a) Patterns and mechanisms for age-dependent reproduction and survival in birds. Am Zool
35:340–348

Martin TE (1995b) Avian life history evolution in relation to nest sites, nest predation, and food. Ecol
Monogr 65:101–127

Martin TE (2004) Avian life-history evolution has an eminent past: Does it have a bright future? Auk
121:289–301

Martin TE, Barber PM (1995) Red-faced Warbler (Cardellina rubrifrons). In: Poole A (ed) The birds of
North America Online. Cornell Lab of Ornithology, Ithaca; Retrieved January 2, 2008, from the Birds
of North America Online: http://bna.birds.cornell.edu.bnaproxy.birds.cornell.edu/bna/species/152

Martin TE, Geupel GR (1993) Nest-monitoring plots: methods for locating nests and monitoring success.
J Field Ornithol 64:507–519

Martin TE, Martin PR, Olson CR, Heidinger BJ, Fontaine JJ (2000) Parental care and clutch sizes in North
and South American birds. Science 287:1482–1485

Meijer T, Daan S, Hall M (1990) Family planning in the Kestrel (Falco tinnunculus): the proximate
regulation of covariation of laying date and clutch size. Behaviour 114:117–136

Murphy MT (1986) Temporal components of reproductive variability in Eastern Kingbirds (Tyrannus
tyrannus). Ecology 67:1483–1492

Nager RG, Ruegger C, VanNoordwijk AJ (1997) Nutrient or energy limitation on egg formation: a feeding
experiment in great tits. J Anim Ecol 66:495–507

Nilsson J-Å (1991) Clutch size determination in the Marsh Tit (Parus palustris). Ecology 72:1757–1762
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